Rule Induction from Monolingual Continuous Representation

Kai Zhao

Hany Hassan

Michael Auli

Graduate Center City University of New York

Microsoft Research

Microsoft[®] Research Facebook AI Research

the explosive dog

the explosive dog

the explosive detection dog

Monolingual Rule Induction

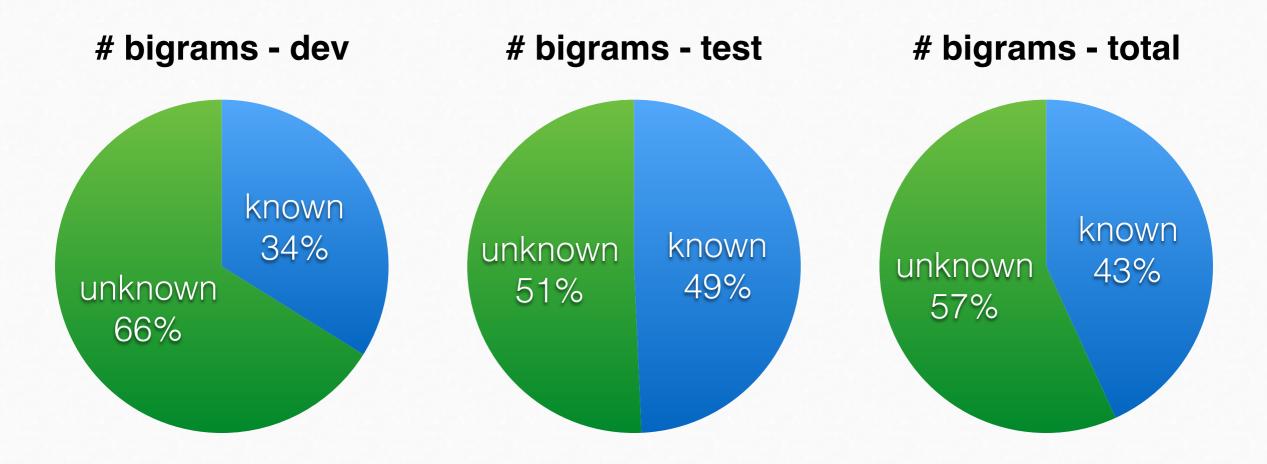
- Translation models are often learned from small bilingual corpora
 - for some language pairs, there are no large bitext corpora
 - unable to handle infreq./unseen phrases in dev/test set
- We have **huge** monolingual corpora
 - can be used to help improve translation models when combined with bilingual data

bilingual monolingual

3

Unknown Phrases from Bilingual Data

- Rules induced from bilingual data
 - Iots of unknown phrases in dev/test set
 - # of unknown bigrams

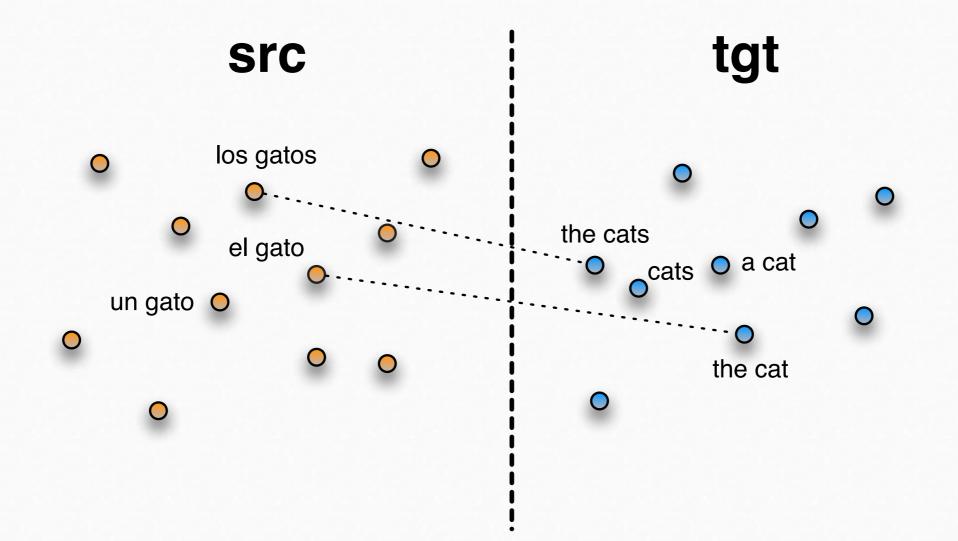


(Arabic - English; Saluja et al., 2014)

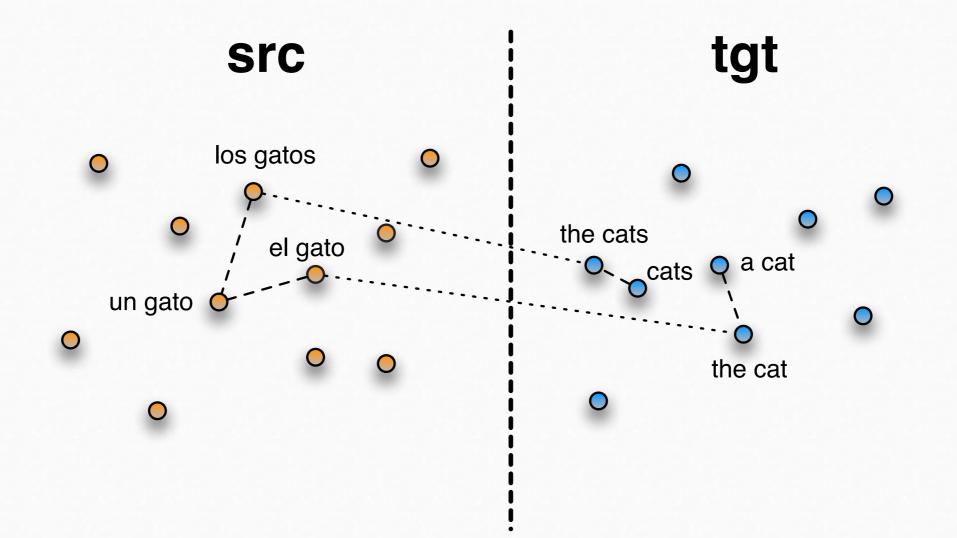
Monolingual Rule Induction

- Translation rule induction for infrequent phrases using similar phrases which we have a translation
- Infrequent phrases should be frequent enough in monolingual corpora
- How to model meaning **similarity**
 - phrases which occur in similar contexts (Saluja et al., 2014)
 - computationally expensive
 - continuous representations
 - e.g., Word Embeddings (Mikolov et al., 2013)

Monolingual Phrasal Embedding

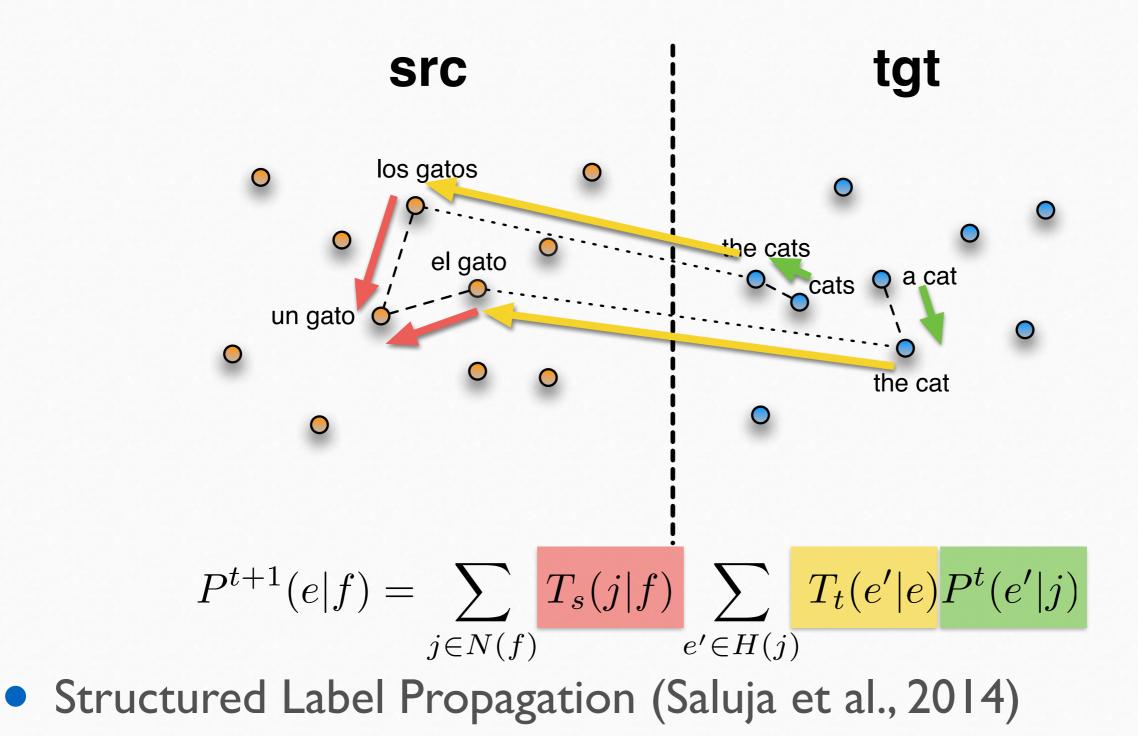


- Phrasal embeddings from monolingual corpora
 - combine word vectors via component-wise addition (Mitchell & Lapata, 2010)

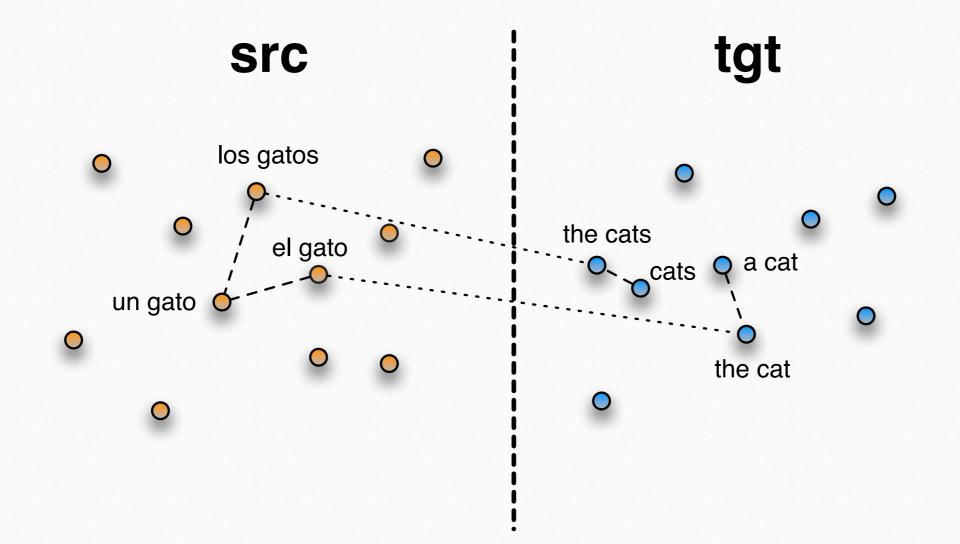


Structured Label Propagation (Saluja et al., 2014)

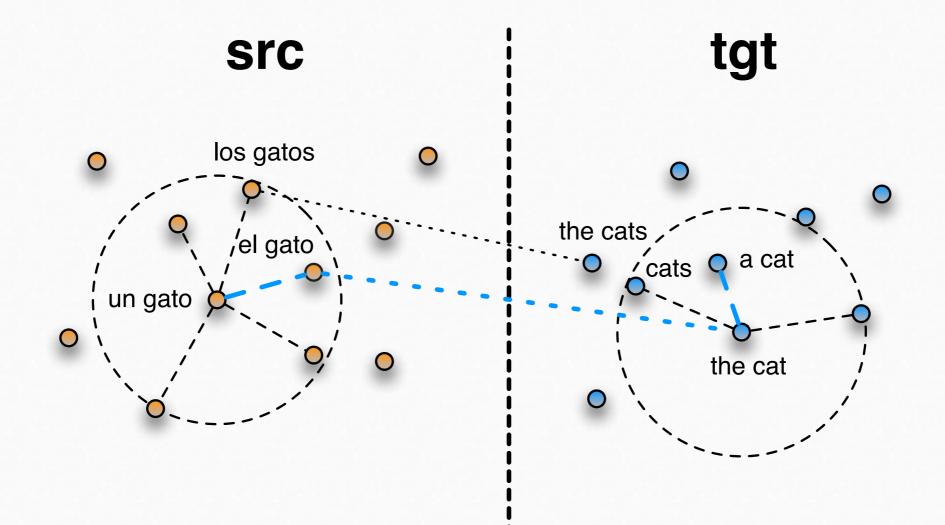
propagates correct translation candidates through labeled neighbors



propagates correct translation candidates through labeled neighbors



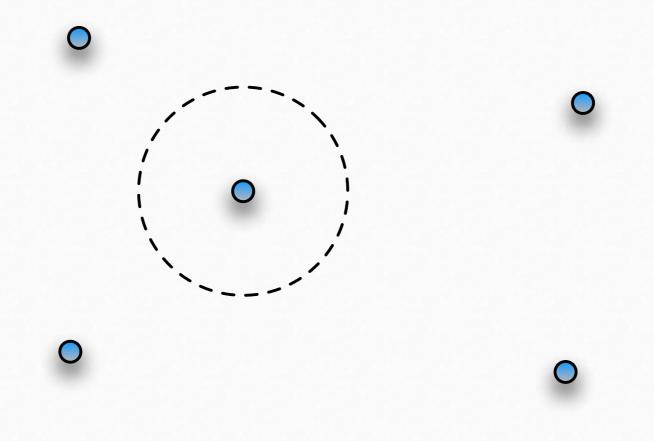
- How to define neighbors? How to find them?
 - Saluja et al., 2014: distributional similarity, contextual bag of words, PMI
 - $O(n^2)$ time linear search over the whole phrase space



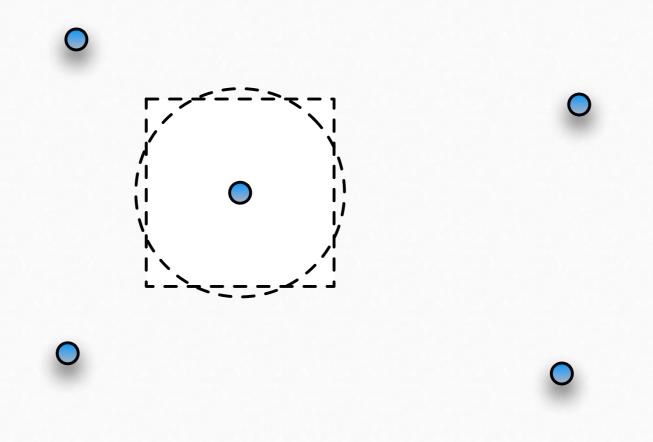
- How to define neighbors? How to find them?
 - Phrases with similar meanings are close in the continuous space
 - (Approximated) K nearest neighbor query

- Locality sensitive hashing, LSH (Indyk & Motwani, 1998)
 - based on random projections
- Redundant bit vectors, RBV (Goldstein et al., 2005)
 - designed for computer vision tasks
 - split each dimension into slices, mark overlapping points w/ bit vectors
 - use bitwise and to fetch close points

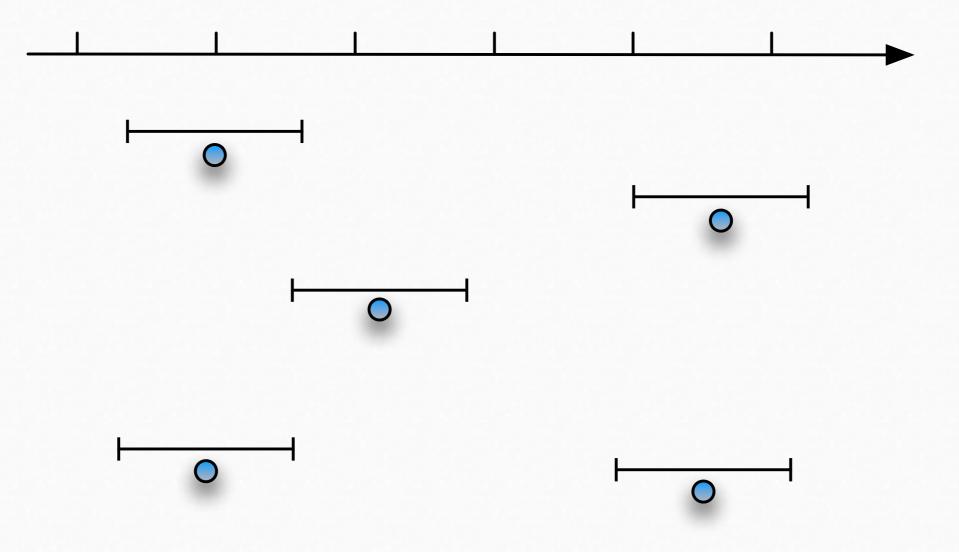
RBV



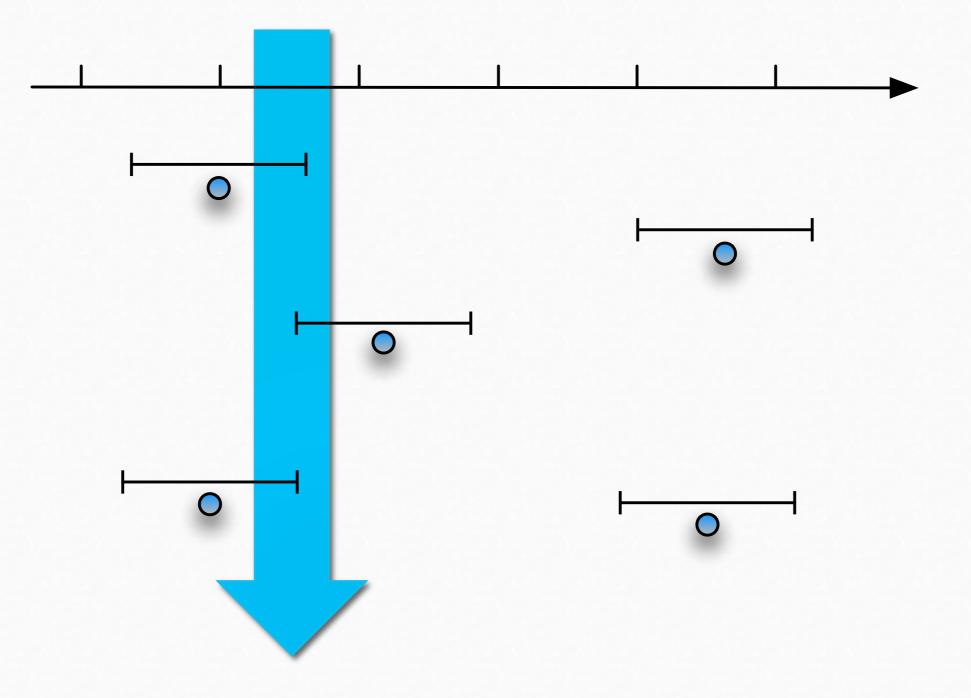
- RBV: Hypercube instead of Hypersphere
- To cover 99% of the hypersphere, hypercube has smaller r
 - For 256d, hypercube only needs 1/3 r to cover 99% of the hypersphere
- neighboring test: in hypersphere => in hypercube => distance on each dim



• RBV: Split each dimension into slices



• RBV: Querying by bitwise and over dimensions

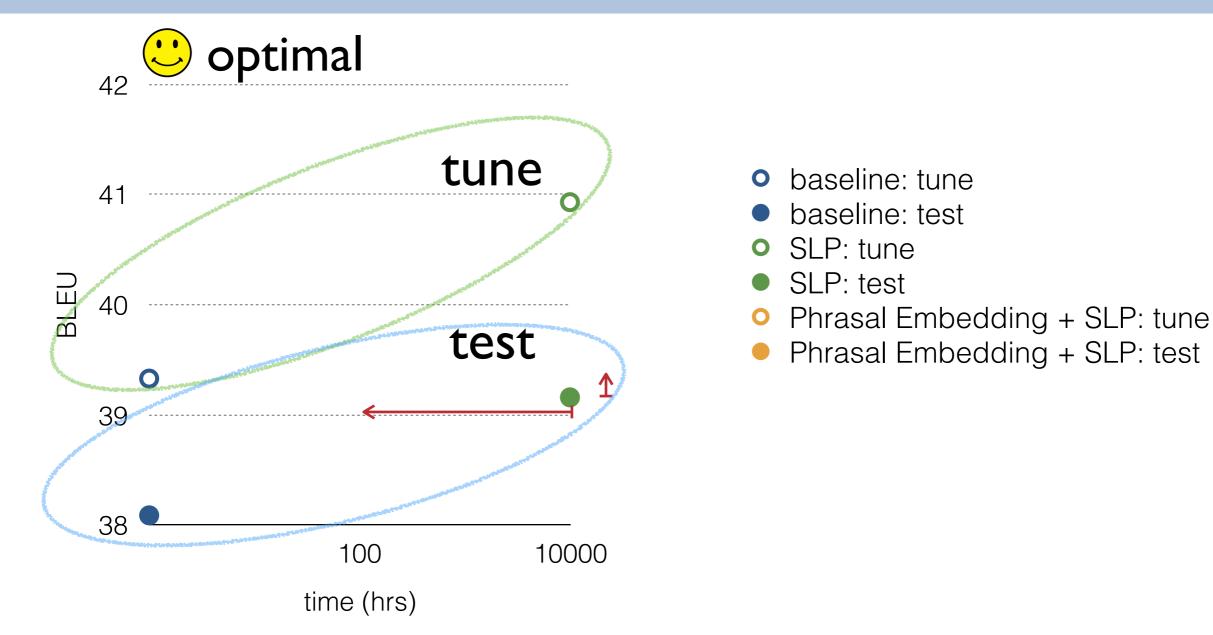


Approximated k-NN: Performance

- 951,453 word embedding vectors
- 200 dimensions
- Test on 100 words, k = 200 nearest neighbors
- False Negative Rate
 - true neighbors missed by k-NN
 - correct translations missed

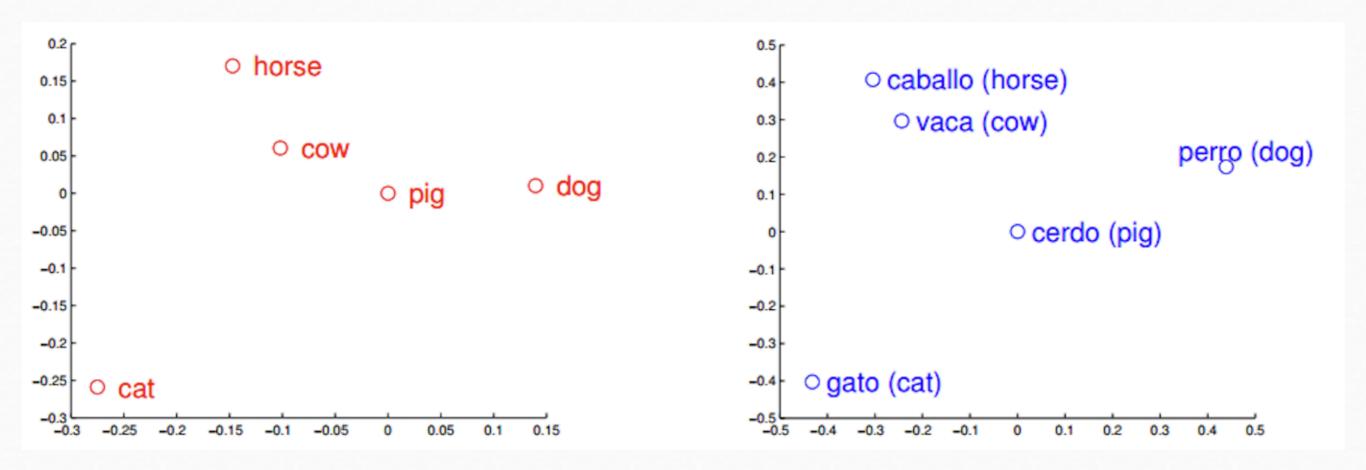
	False Negative	Time
Linear Search	0	342s
LSH	14.29%	69s
RBV	9.08%	19s

Phrasal Embedding + SLP: Performances



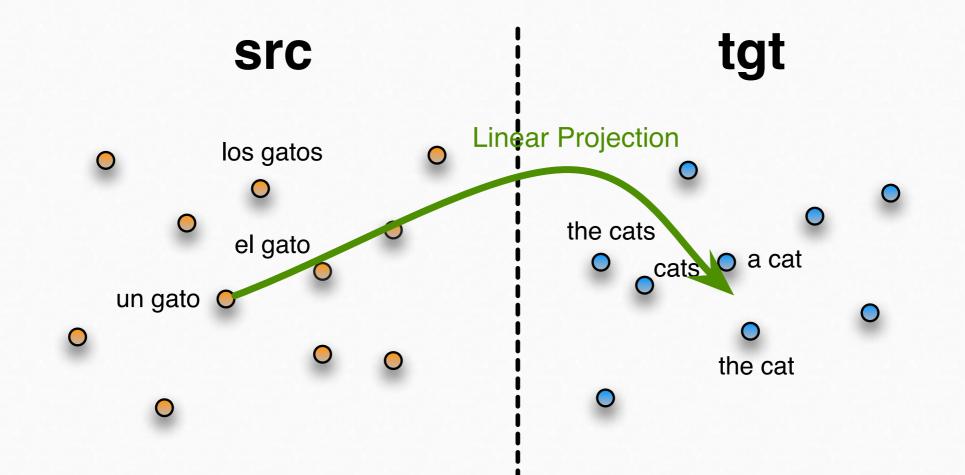
- Phrasal Embedding + SLP
 - I 00 times faster than vanilla SLP
 - slightly better in translation quality than vanilla SLP

Direct Projection



- The relative positions of different words are similar between different languages (Mikolov et al., 2013)
 - trained on most frequent words
 - Linear Projection?

Direct Projection

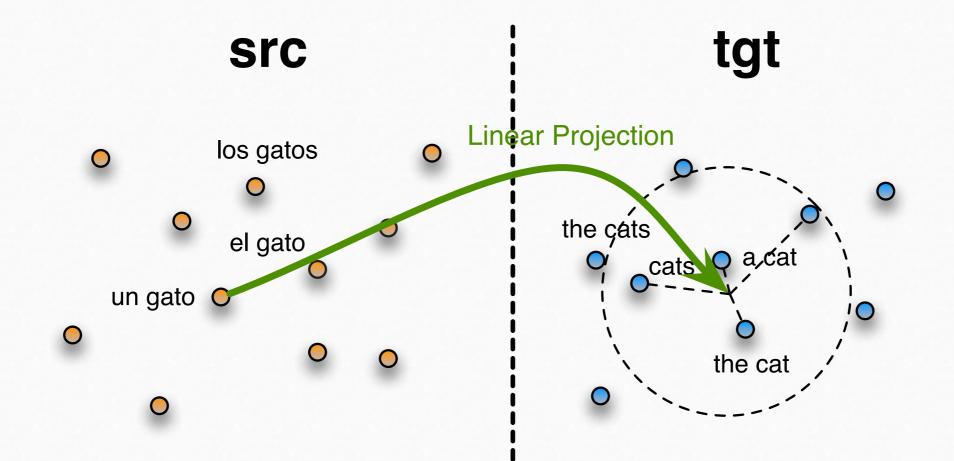


- Project embeddings of infrequent phrase to the target space
 - Projection can be learned by solving linear system

 $XW\approx Y$

 $W \approx (X^T X)^{-1} X^T Y$

Global Linear Projection



Project embeddings of infrequent phrase to the target space

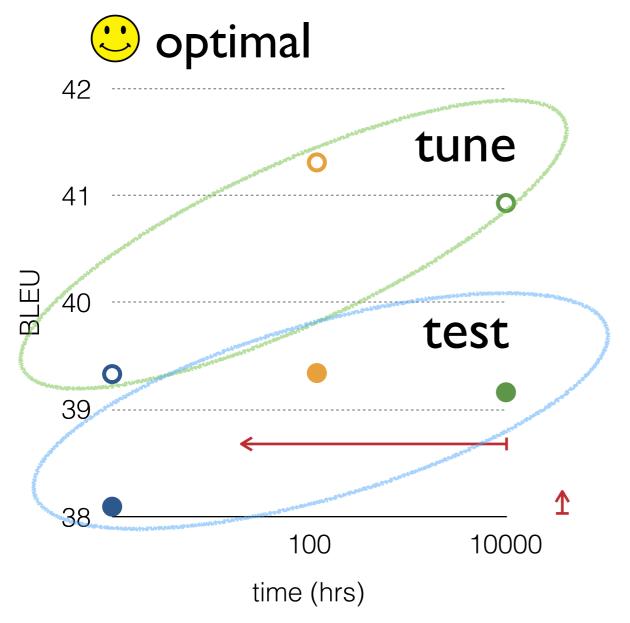
Projection can be learned by solving linear system

 $XW \approx Y$

 $W \approx (X^T X)^{-1} X^T Y$

Query k-NN as translation candidates

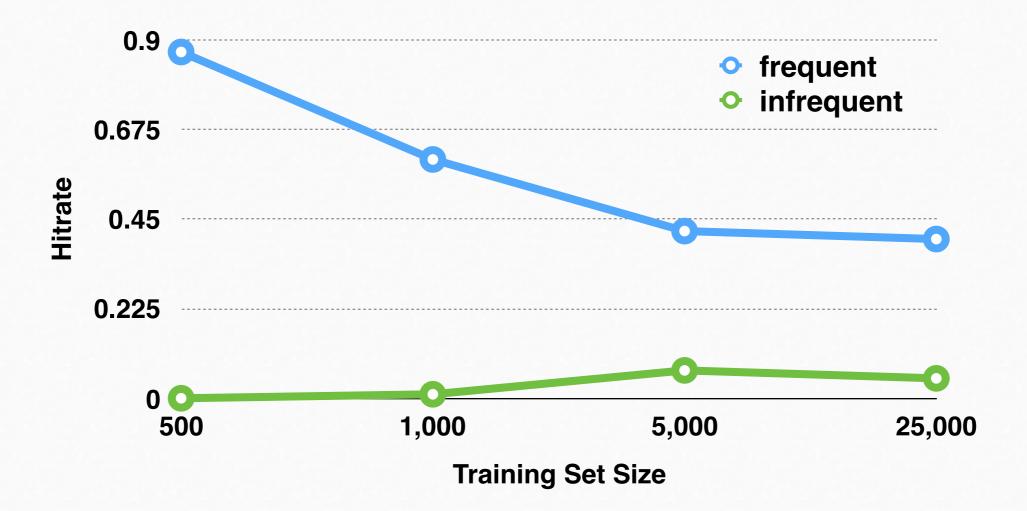
Global Linear Projection: Performance



- baseline: tune
- baseline: test
- SLP: tune
- SLP: test
- Phrasal Embedding + SLP
- Phrasal Embedding + SLP: test
- Global Linear Projection: tune
- Global Linear Projection: test

- Global Linear Projection
 - 500 times faster than vanilla SLP
 - only slightly better in translation quality than baseline

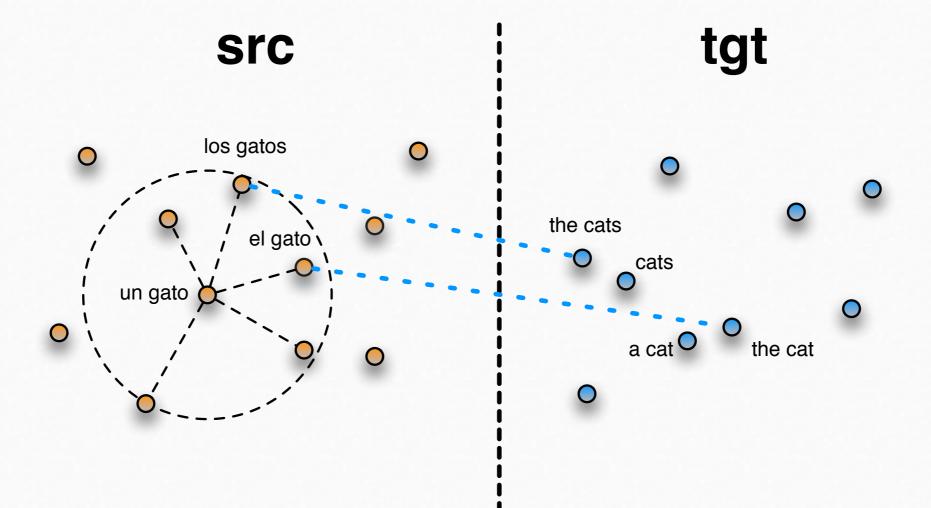
Global Linear Projection: Projection Quality



- Optimal Linear Projection trained on most frequent words
- Quality of the projection is evaluated on two sets: frequent & infrequent
- Hit rate: probability that the correct translation is fetched by k-NN of the projected point (k = 200)

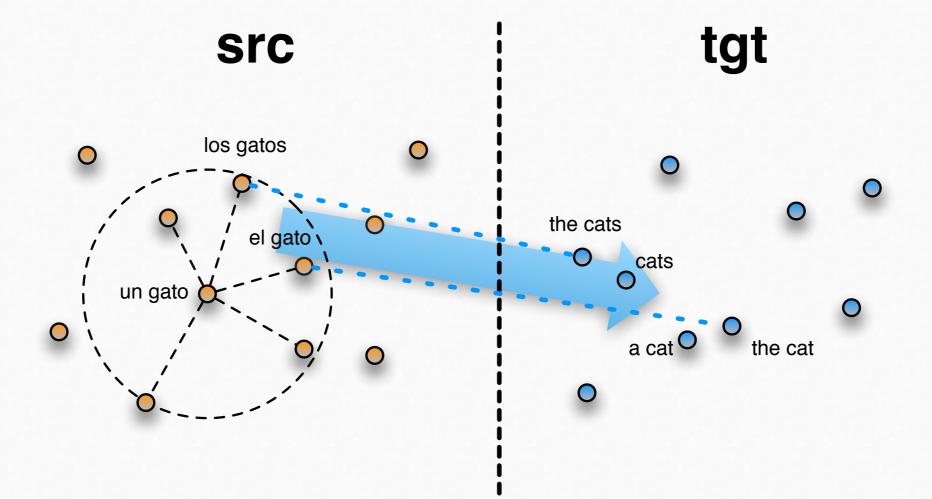
Direct Projection: Global => Local

- Global linear projection is noisy for infrequent phrases
- Linear projection likely to be more accurate for the subsets of the data
 - idea: use many **local** projections instead of a single global projection
 - analogous to Locality Perserving Projections (He & Niyogi, 2004)



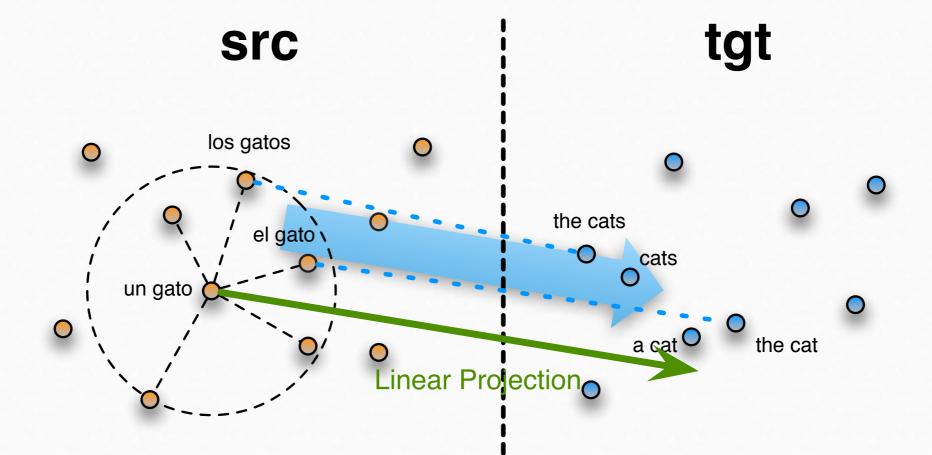
Local Linear Projection

- Global linear projection is noisy for infrequent phrases
- Linear projection likely to be more accurate for the subsets of the data
 - idea: use many **local** projections instead of a single global projection
 - analogous to Locality Perserving Projections (He & Niyogi, 2004)



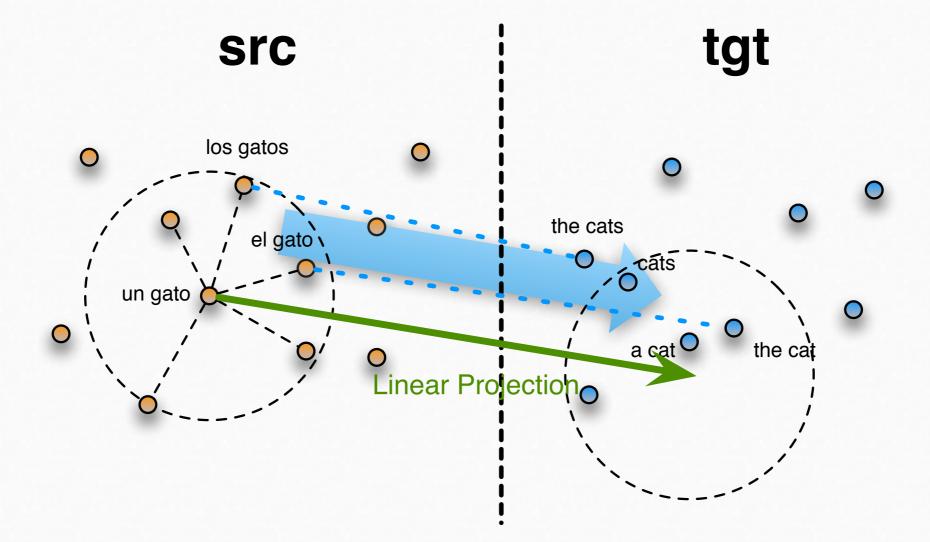
Local Linear Projection

- Global linear projection is noisy for infrequent phrases
- Linear projection likely to be more accurate for the subsets of the data
 - idea: use many **local** projections instead of a single global projection
 - analogous to Locality Perserving Projections (He & Niyogi, 2004)

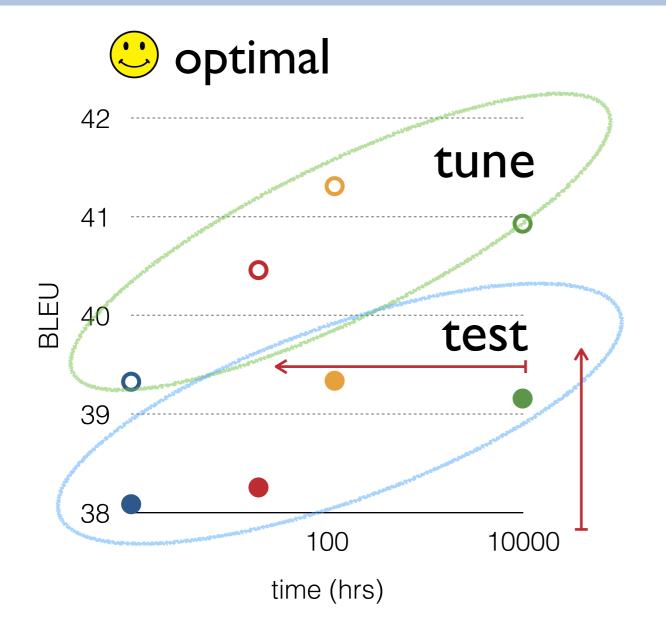


Local Linear Projection

- Global linear projection is noisy for infrequent phrases
- Linear projection likely to be more accurate for the subsets of the data
 - idea: use many **local** projections instead of a single global projection
 - analogous to Locality Perserving Projections (He & Niyogi, 2004)



Local Linear Projection: Performances

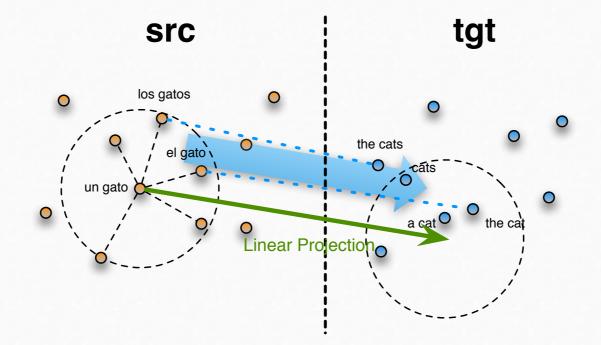


- baseline: tune
- baseline: test
- SLP: tune
- SLP: test
- Phrasal Embedding + SLP
- Phrasal Embedding + SLP: test
- Global Linear Projection: tune
- Global Linear Projection: test
- Local Linear Projection: tune
- Local Linear Projection: test

- Local Linear Projection
 - 400 times faster than vanilla SLP
 - best performance over all

Conclusion

- Introduced a simple set of linear projections to learn new translations
- Projections 400x times faster than SLP at the same accuracy
- A single global projection is vulnerable to noise
- Demonstrated RBV as a fast and accurate alternative to LSH
- Non-Linear Projection? Contextual Information?



FIN Thank you! Questions?