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Discriminative Training for SMT

® discriminative training is not very successful yet in MT
® although dominant in parsing/tagging

® can use arbitrary, overlapping, lexicalized features

® most efforts on MT training tune feature weights on the
small dev set (~ |k sents) not the training set!

® as a result can only use ~|0 dense features (MERT)

® or ~|0k rather impoverished features (MIRA/PRO)

® Liang et al ('06) train on the training set but not successful

33 dev set test set
training set (> 100k sentences)
(~ Ik sents) § (~lk sents)
3



MT as Structured Classification

® with latent variables (hidden derivations)
® structured perceptron => latent-variable structured perceptron

training example
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From PBMT to Hiero

® Phrase-based translation suffers from distortion limit

® can only use a small portion of bitext (low forced decoding reachability)

® translation quality is often slightly worse than hierarchical models

reachability % (in # of words) on FBIS
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From PBMT to Hiero

® Phrase-based translation suffers from distortion limit
® can only use a small portion of bitext (low forced decoding reachability)
® translation quality is often slightly worse than hierarchical models
® Hiero handles reordering better
® potentially more sentences to train
® |earn more sparse features

® Challenge: generalize max-violation latent perceptron to hypergraphs!?
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A Hiero Example
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A Hiero Example
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Search Error: Reference Got Pruned
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Search Error: Reference Got Pruned
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® Reference derivation rank too low in the beam and gets pruned

® We call it a Violation iff. score(viterbi) - score(reference) > 0
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Fixing Search Error: Max-Violation

® standard perceptron does not guarantee violation
® w/ pruning, the correct derivation might score higher at the ends
® called “invalid” update b/c it doesn’t fix the search error

® max-violation: update at where the violation is maximum
® “worst-mistake” in the search

® |earns more and faster

® “violation-fixing perceptron” (Huang et al 2012)
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Max-Violation over Hypergraphs




Max-Violation over Hypergraphs
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Max-Violation over Hypergraphs
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® Update at where the violation b/w the Viterbi and the
reference is maximum (Zhang et al.’ | 3)



Max-Violation over Hypergraphs
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Max-Violation over Hypergraphs w/ Latent Var.
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Max-Violation over Hypergraphs w/ Latent Var.
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Max-Violation over Hypergraphs w/ Latent Var.

Xio:1]

® multiple reference derivations at one node

® at one node, pick the best reference

® globally choose max-violated best reference >



Max-Violation over Hypergraphs w/ Latent Var.
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Max-Violation over Hypergraphs w/ Latent Var.

\vite rbi

Xio:1]

® multiple reference derivations at one node

® at one node, pick the best reference

® globally choose max-violated best reference >



Latent-Variable Max-Violation Perceptron
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Experiments Setting

train
IWSLTO09

30k short sentences

dev

IWSLT 04

| 6 references

test
IWSLTOS5

| 6 references

FBIS

240k sentences

NISTO6

4 references

NISTO8

4 references

® |8 dense features from cdec

® budgeted sparse features based on Word-Edge features

® atomic features: C/E boundary words; C boundary characters

® complex features

® combination of atomic features within limited budget

® we remove all |-count rules in rule extraction

® trigram LM trained from target side

|4



Experiments

® Reachability on FBIS

7% reachability (in # of words)

PBMT
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Hiero (all rules)
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Experiments
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Experiments

® Contribution of Sparse Features (on IWSLT09)
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Experiments

® BLEU scores on IWSLTO09 (16 refs) and FBIS (4 refs)
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our method
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Conclusion

e A latent-variable violation-fixing perceptron
framework for general structured prediction problems with
inexact search over hypergraphs

® Compared with PBMT, it can use more training sentences.

® Compared with MERT/PRQ, it is simpler in theory and
practice, and achieves better translations
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