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MT is hard
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Discriminative Training for SMT

• discriminative training is not very successful yet in MT 

• although dominant in parsing/tagging

• can use arbitrary, overlapping, lexicalized features

• most efforts on MT training tune feature weights on the 
small dev set (~1k sents) not the training set!

• as a result can only use ~10 dense features (MERT)

• or ~10k rather impoverished features (MIRA/PRO)

• Liang et al (’06) train on the training set but not successful

training set (>100k sentences) dev set
 (~1k sents)

test set
 (~1k sents)
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MT as Structured Classification

• with latent variables (hidden derivations)

• structured perceptron => latent-variable structured perceptron
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max-violation latent perceptron
(Yu et al, 2013)ASDFDSAFASDF
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From PBMT to Hiero
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From PBMT to Hiero
• Phrase-based translation suffers from distortion limit

• can only use a small portion of bitext (low forced decoding reachability)

• translation quality is often slightly worse than hierarchical models
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From PBMT to Hiero
• Phrase-based translation suffers from distortion limit

• can only use a small portion of bitext (low forced decoding reachability)

• translation quality is often slightly worse than hierarchical models

• Hiero handles reordering better

• potentially more sentences to train

• learn more sparse features

• Challenge: generalize max-violation latent perceptron to hypergraphs?
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Search Error: Reference Got Pruned

9

X[4:5]

X[1:5]

X[0:1]

S[0:1]

X[2:3]

S[0:5]

held talks with Sharon

X[1:3]

with Sharon held talks



...

...

Search Error: Reference Got Pruned

9

X[4:5]

X[1:5]

X[0:1]

S[0:1]

X[2:3]

S[0:5]

held talks with Sharon

X[1:3]

with Sharon held talks



...

...

Search Error: Reference Got Pruned

9

X[4:5]

X[1:5]

X[0:1]

S[0:1]

X[2:3]

S[0:5]

held talks with Sharon

X[1:3]

with Sharon held talks

beam at X[1:5]

candidate score
X1 held X2 0.88

X1 holds X2 0.86

... ...
held X2 with X1 0.25

... ...



...

...

Search Error: Reference Got Pruned

9

X[4:5]

X[1:5]

X[0:1]

S[0:1]

X[2:3]

S[0:5]

held talks with Sharon

X[1:3]

with Sharon held talks

beam at X[1:5]

candidate score
X1 held X2 0.88

X1 holds X2 0.86

... ...
held X2 with X1 0.25

... ...



...

...

Search Error: Reference Got Pruned

9

X[4:5]

X[1:5]

X[0:1]

S[0:1]

X[2:3]

S[0:5]

held talks with Sharon

X[1:3]

with Sharon held talks

• Reference derivation rank too low in the beam and gets pruned

• We call it a Violation iff. score(viterbi) - score(reference) > 0

beam at X[1:5]

candidate score
X1 held X2 0.88

X1 holds X2 0.86

... ...
held X2 with X1 0.25

... ...



= amount of violation

...

...

Search Error: Reference Got Pruned

9

X[4:5]

X[1:5]

X[0:1]

S[0:1]

X[2:3]

S[0:5]

held talks with Sharon

X[1:3]

with Sharon held talks

• Reference derivation rank too low in the beam and gets pruned

• We call it a Violation iff. score(viterbi) - score(reference) > 0

beam at X[1:5]

candidate score
X1 held X2 0.88

X1 holds X2 0.86

... ...
held X2 with X1 0.25

... ...



Fixing Search Error: Max-Violation

Model
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• standard perceptron does not guarantee violation

• w/ pruning, the correct derivation might score higher at the ends

• called “invalid” update b/c it doesn’t fix the search error

• max-violation: update at where the violation is maximum

• “worst-mistake” in the search

• learns more and faster

• “violation-fixing perceptron” (Huang et al 2012)
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Fixing Search Error: Max-Violation
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• standard perceptron does not guarantee violation

• w/ pruning, the correct derivation might score higher at the ends

• called “invalid” update b/c it doesn’t fix the search error

• max-violation: update at where the violation is maximum

• “worst-mistake” in the search

• learns more and faster
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Max-Violation over Hypergraphs
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Max-Violation over Hypergraphs

• Update at where the violation b/w the Viterbi and the 
reference is maximum (Zhang et al. ’13)
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Max-Violation over Hypergraphs w/ Latent Var.
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Max-Violation over Hypergraphs w/ Latent Var.

• multiple reference derivations at one node

• at one node, pick the best reference
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Latent-Variable Max-Violation Perceptron
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Experiments Setting

train dev test
IWSLT09

30k short sentences
IWSLT04
16 references

IWSLT05
16 references

FBIS
240k sentences

NIST06
4 references

NIST08
4 references
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• 18 dense features from cdec

• budgeted sparse features based on Word-Edge features

• atomic features: C/E boundary words; C boundary characters 

• complex features

• combination of atomic features within limited budget 

• we remove all 1-count rules in rule extraction 

• trigram LM trained from target side 



Experiments

• Reachability on FBIS
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Experiments

• Comparison of various 
update methods (IWSLT)
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Experiments

• Contribution of Sparse Features (on IWSLT09)
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Experiments

• BLEU scores on IWSLT09 (16 refs) and FBIS (4 refs)
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• A latent-variable violation-fixing perceptron 
framework for general structured prediction problems with 
inexact search over hypergraphs

• Compared with PBMT, it can use more training sentences.

• Compared with MERT/PRO, it is simpler in theory and 
practice, and achieves better translations 


