Structured Prediction with Perceptron: Theory and Algorithms

Kai Zhao Liang Huang

Graduate Center, the City University of New York

slides at: http://kaizhao.me

What is Structured Prediction?

- bin
- NLP is all about structured prediction!
- structured classification: output is a structure (seq., tree, graph)
 - part-of-speech tagging, parsing, summarization, translation
 - exponentially many classes: search (inference) efficiency is crucial! 2

An Example of Bad Structured Prediction

Learning: Unstructured vs. Structured

Why Perceptron (Online Learning)?

- because we want scalability on big data!
- learning time has to be linear in the number of examples
 - can make only constant number of passes over training data
 - only online learning (perceptron/MIRA) can guarantee this!
 - SVM scales between O(n²) and O(n³); CRF no guarantee
- and inference on each example must be super fast
 - another advantage of perceptron: just need argmax

Perceptron: from binary to structured

binary perceptron (Rosenblatt, 1959)

multiclass perceptron (Freund/Schapire, 1999)

structured perceptron (Collins, 2002)

Scalability Challenges

- inference (on one example) is too slow (even w/ DP)
 - can we sacrifice search exactness for faster learning?
 - would inexact search interfere with learning?

• if so, how should we modify learning?

Outline

- Overview of Structured Learning
 - Challenges in Scalability
- Structured Perceptron
 - convergence proof
- Structured Perceptron with Inexact Search

Latent-Variable Structured Perceptron

Generic Perceptron

- perceptron is the simplest machine learning algorithm
- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes

Structured Perceptron

Inputs:

Training set (x_i, y_i) for $i = 1 \dots n$

Initialization:

 $\mathbf{W} = 0$

Define:

$$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \mathbf{\Phi}(x, y) \cdot \mathbf{W}$$

Algorithm:

For
$$t = 1 ... T$$
, $i = 1 ... n$
 $z_i = F(x_i)$
If $(z_i \neq y_i)$ $\mathbf{W} \leftarrow \mathbf{W} + \mathbf{\Phi}(x_i, y_i) - \mathbf{\Phi}(x_i, z_i)$

Output:

Parameters W

Example: POS Tagging

- gold-standard: DT NN VBD DT NN y• the man bit the dog x• current output: DT NN NN DT NN z• the man bit the dog x
 - assume only two feature classes
 - tag bigrams
- t_{i-1}
 - word/tag pairs
 - weights ++: (NN, VBD) (VBD, DT) (VBD→bit)

Wi

weights --: (NN, NN) (NN, DT) (NN→bit)

Inference: Dynamic Programming

tagging: $O(nT^3)$

CKY parsing: $O(n^3)$

Perceptron vs. CRFs

- perceptron is online and Viterbi approximation of CRF
- simpler to code; faster to converge; ~same accuracy

Perceptron Convergence Proof

- binary classification: converges iff. data is separable
- structured prediction: converges iff. data is separable
 - there is an oracle vector that correctly labels all examples
 - one vs the rest (correct label better than all incorrect labels)
- theorem: if separable, then # of updates $\leq R^2 / \delta^2$ R: diameter

Geometry of Convergence Proof pt I

perceptron update:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \Delta \mathbf{\Phi}(x, y, z)$$

$$\mathbf{u} \cdot \mathbf{w}^{(k+1)} = \mathbf{u} \cdot \mathbf{w}^{(k)} + \begin{bmatrix} \mathbf{u} \cdot \Delta \mathbf{\Phi}(x, y, z) \\ \geq \delta & \text{margin} \end{bmatrix}$$

$$\mathbf{u} \cdot \mathbf{w}^{(k+1)} > k\delta$$
 (by induction)

$$\|\mathbf{w}^{k+1}\| \ge k\delta$$

(part I: lowerbound)

Geometry of Convergence Proof pt 2

1: repeat for each example (x, y) in D do $z \leftarrow \text{EXACT}(x, \mathbf{w})$ if $z \neq y$ then $\mathbf{w} \leftarrow \mathbf{w} + \Delta \Phi(x, y, z)$ 6: until converged exact

- summary: the proof uses 3 facts:
- I. separation (margin)
- 2. diameter (always finite)
- 3. violation (guaranteed by exact search)

violation: incorrect label scored higher

perceptron update:

$$\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \Delta \mathbf{\Phi}(x, y, z)$$

$$\|\mathbf{w}^{(k+1)}\|^2 = \|\mathbf{w}^{(k)} + \Delta \mathbf{\Phi}(x, y, z)\|^2$$

$$= \|\mathbf{w}^{(k)}\|^2 + \|\mathbf{w}^{(k)}\|^2$$

$$\|\mathbf{w}^{(k)}\|^2 + \left\|\Delta \Phi(x, y, z)\|^2 + 2 \mathbf{w}^{(k)} \cdot \Delta \Phi(x, y, z) \le R^2 \le 0$$
diameter violation

$$-2 \mathbf{w}^{(k)} \cdot \Delta \mathbf{\Phi}(x, y, z)$$

violation

by induction:

-best

$$\|\mathbf{w}^{k+1}\|^2 \le kR^2$$

(part 2: upperbound)

combine with: $\|\mathbf{w}^{k+1}\| \geq k\delta$

$$\|\mathbf{w}^{k+1}\| \ge k\epsilon$$

(part I: lowerbound)

bound on # of updates:

Outline

- Overview of Structured Learning
 - Challenges in Scalability
- Structured Perceptron
 - convergence proof
- Structured Perceptron with Inexact Search

Latent-Variable Perceptron

Scalability Challenge 1: Inference

- challenge: search efficiency (exponentially many classes)
 - often use dynamic programming (DP)
 - but DP is still too slow for repeated use, e.g. parsing $O(n^3)$
 - Q: can we sacrifice search exactness for faster learning?

Perceptron w/ Inexact Inference

- routine use of inexact inference in NLP (e.g. beam search)
- how does structured perceptron work with inexact search?
 - so far most structured learning theory assume exact search
 - would search errors break these learning properties?
 - if so how to modify learning to accommodate inexact search?

Bad News and Good News

- bad news: no more guarantee of convergence
 - in practice perceptron degrades a lot due to search errors
- good news: new update methods guarantee convergence
 - new perceptron variants that "live with" search errors
 - in practice they work really well w/ inexact search

Convergence with Exact Search


```
training example time flies
```

output space $\{N,V\} \times \{N,V\}$

structured perceptron converges with exact search

No Convergence w/ Greedy Search

Which part of the convergence proof no longer holds?

```
the proof only uses 3 facts:
1. separation (margin)
2. diameter (always finite)
3. violation (guaranteed by exact search)
```

Geometry of Convergence Proof pt 2

inexact search doesn't guarantee violation!

Observation: Violation is all we need!

- exact search is not really required by the proof
 - rather, it is only used to ensure violation!

model w(k)

Wood

Model

the proof only uses 3 facts:

- 1. separation (margin)
- 2. diameter (always finite)
- 3. violation (but no need for exact)

Violation-Fixing Perceptron

- if we guarantee violation, we don't care about exactness!
 - violation is good b/c we can at least fix a mistake

same mistake bound as before!

- 1: repeat
- 2: for each example (x, y) in D do
- 3: $(x, y', z) = \text{FINDVIOLATION}(x, y, \mathbf{w})$
- 4: if $z \neq y$ then
 - $\triangleright (x, y', z)$ is a viol
- 5: $\mathbf{w} \leftarrow \mathbf{w} + \Delta \Phi(x, y', z)$
- 6: until converged

standard perceptron

violation-fixing perceptron

What if can't guarantee violation

- this is why perceptron doesn't work well w/ inexact search
 - because not every update is guaranteed to be a violation
 - thus the proof breaks; no convergence guarantee
- example: beam or greedy search
 - the model might prefer the correct label (if exact search)
 - but the search prunes it away
 - such a non-violation update is "bad" because it doesn't fix any mistake
 - the new model still misguides the search
- Q: how can we always guarantee violation?

Solution 1: Early update (Collins/Roark 2004)

training example
time flies

output space $\{N,V\} \times \{N,V\}$

standard perceptron does not converge with greedy search

stop and update at the first mistake

Early Update: Guarantees Violation

training example
time flies
N V

output space $\{N,V\} \times \{N,V\}$

standard update
doesn't converge
b/c it doesn't
guarantee violation

early update: incorrect prefix scores higher: a violation!

Early Update: from Greedy to Beam

- beam search is a generalization of greedy (where b=1)
 - at each stage we keep top b hypothesis
 - widely used: tagging, parsing, translation...
- early update -- when correct label first falls off the beam
 - up to this point the incorrect prefix should score higher
- standard update (full update) -- no guarantee!

(pruned)

Solution 2: Max-Violation (Huang et al 2012)

- we now established a theory for early update (Collins/Roark)
- but it learns too slowly due to partial updates
- max-violation: use the prefix where violation is maximum
 - "worst-mistake" in the search space
- all these update methods are violation-fixing perceptrons

Four Experiments

part-of-speech tagging

incremental parsing

bottom-up parsing w/ cube pruning

machine translation

Max-Violation > Early >> Standard

- exp I on part-of-speech tagging w/ beam search (on CTB5)
- early and max-violation >> standard update at smallest beams
 - this advantage shrinks as beam size increases

tagging accuracy on held-out

max-violation converges faster than early (and slightly better)

Max-Violation > Early >> Standard

- exp I on part-of-speech tagging w/ beam search (on CTB5)
- early and max-violation >> standard update at smallest beams
 - this advantage shrinks as beam size increases

tagging accuracy on held-out

max-violation converges faster than early (and slightly better)

33

Max-Violation > Early >> Standard

- exp 2 on incremental dependency parser (Huang & Sagae 10)
- standard update is horrible due to search errors
- early update: 38 iterations, 15.4 hours (92.24)
- max-violation: 10 iterations, 4.6 hours (92.25)

max-violation is 3.3x faster than early update 34

Why standard update so bad for parsing

- standard update works horribly with severe search error
 - due to large number of invalid updates (non-violation)

Exp 3: Bottom-up Parsing

- CKY parsing with cube pruning for higher-order features
- we extended our framework from graphs to hypergraphs

Exp 4: Machine Translation

- standard perceptron works poorly for machine translation
 - b/c invalid update ratio is very high (search quality is low)

max-violation converges faster than early update

• first truly successful effort in large-scale training for translation

Comparison of Four Exps

the harder your search, the more advantageous

Outline

- Overview of Structured Learning
 - Challenges in Scalability
- Structured Perceptron
 - convergence proof
- Structured Perceptron with Inexact Search

Latent-Variable Perceptron

Learning with Latent Variables

- aka "weakly-supervised" or "partially-observed" learning
- learning from "natural annotations"; more scalable
- examples: translation, transliteration, semantic parsing...

parallel text

(Liang et al 2006; Yu et al 2013; Xiao and Xiong 2013)

(Knight & Graehl, 1998; Kondrak et al 2007, etc.)

(Clark et al 2010; Liang et al 2013; Kwiatkowski et al 2013)

Learning Latent Structures

Latent Structured Perceptron

no explicit positive signal

- $x \rightarrow \begin{array}{c} w \\ \hline x \rightarrow \\ \text{inference} \end{array} \rightarrow z \rightarrow \begin{array}{c} \text{update weights} \\ \hline y \neq z \end{array}$
- hallucinate the "correct" derivation by current weights

during online learning...

$$\mathbf{w} \leftarrow \mathbf{w} + \Phi(x, \mathbf{d}^*) - \Phi(x, \mathbf{d})$$

(Liang et al 2006; Yu et al 2013) reward correct

penalize wrong

Unconstrained Search

example: beam search phrase-based decoding

Constrained Search

• forced decoding: must produce the exact reference translation

Search Errors in Decoding

no explicit positive signal

- $x \rightarrow \begin{array}{c} w \\ x \rightarrow \\ \text{inference} \end{array} \rightarrow z \rightarrow \begin{array}{c} \text{update weights} \\ \text{if } y \neq z \end{array}$
- hallucinate the "correct" derivation by current weights

during online learning...

$$\mathbf{w} \leftarrow \mathbf{w} + \Phi(x, \mathbf{d}^*) - \Phi(x, \mathbf{d})$$

problem: search errors

(Liang et al 2006; Yu et al 2013) reward correct

penalize wrong

Search Error: Gold Derivations Pruned

real decoding beam search

should address search errors here!

Fixing Search Error 1: Early Update

- early update (Collins/Roark'04) when the correct falls off beam
 - up to this point the incorrect prefix should score higher
 - that's a "violation" we want to fix; proof in (Huang et al 2012)
- standard perceptron does not guarantee violation
 - the correct sequence (pruned) might score higher at the end!
 - "invalid" update b/c it reinforces the model error

Early Update w/ Latent Variable

- the gold-standard derivations are not annotated
 - we treat any reference-producing derivation as good

Fixing Search Error 2: Max-Violation

- early update works but learns slowly due to partial updates
- max-violation: use the prefix where violation is maximum
 - "worst-mistake" in the search space
 - now extended to handle latent-variable

Latent-Variable Perceptron

Roadmap of Techniques

Experiments: Discriminative Training for MT

- standard update (Liang et al's "bold") works poorly
 - b/c invalid update ratio is very high (search quality is low)

max-violation converges faster than early update

Open Problems in Theory

- latent-variable structured perceptron:
 - does it converge? under what conditions?
 - special case: POS tagging (Sun et al., 2009)
- latent-variable structured perceptron with inexact search
 - does it converge? under what conditions?

Open Problems in Theory

- latent-variable structured perceptron:
 - does it converge? under what conditions?
- latent-variable structured perceptron with inexact search
 - does it converge? under what conditions?

Open Problems in Theory

- latent-variable structured perceptron:
 - does it converge? under what conditions?
- latent-variable structured perceptron with inexact search
 - does it converge? under what conditions?

Final Conclusions

- online structured learning is simple and powerful
- search efficiency is the key challenge
- search errors do interfere with learning
 - but we can use violation-fixing perceptron w/ inexact search
- we can extend perceptron to learn latent structures

