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What is Structured Prediction?

• binary classification: output is binary

• multiclass classification: output is a (small) number

•structured classification: output is a structure (seq., tree, graph)

• part-of-speech tagging, parsing, summarization, translation

• exponentially many classes: search (inference) efficiency is crucial! 2
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NLP is all about structured prediction!



An Example of Bad Structured Prediction
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Learning: Unstructured vs. Structured

4

binary/multiclass structured learning

perceptron structured perceptron

SVM structured SVM

Online+  
Viterbi

max 
margin

max 
margin

Online+  
Viterbi

naive  
bayes

HMMs

CRFs
logistic  

regression 
(maxent)

Conditional Conditional

generative 

discriminative  

(count & divide)

(expectations)

(argmax)

(loss-augmented 
argmax)



Why Perceptron (Online Learning)?

• because we want scalability on big data!

• learning time has to be linear in the number of examples

• can make only constant number of passes over training data

• only online learning (perceptron/MIRA) can guarantee this!

• SVM scales between O(n2) and O(n3); CRF no guarantee

• and inference on each example must be super fast

• another advantage of perceptron: just need argmax
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Perceptron: from binary to structured
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Scalability Challenges

• inference (on one example) is too slow (even w/ DP)

• can we sacrifice search exactness for faster learning?

• would inexact search interfere with learning?

• if so, how should we modify learning?
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Outline

• Overview of Structured Learning

• Challenges in Scalability

• Structured Perceptron

• convergence proof

• Structured Perceptron with Inexact Search

• Latent-Variable Structured Perceptron
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Generic Perceptron
• perceptron is the simplest machine learning algorithm

• online-learning: one example at a time

• learning by doing

• find the best output under the current weights

• update weights at mistakes
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Structured Perceptron

10

inferencexi

update weights
zi

yi

w

the man bit the dog

DT NN  VBD DT NN

DT NN  NN DT NN



Example:  POS  Tagging

• gold-standard:    DT   NN   VBD  DT   NN

•                       the   man   bit    the    dog

• current output:  DT   NN   NN   DT   NN

•                       the   man   bit    the    dog

• assume only two feature classes

• tag bigrams          ti-1    ti

• word/tag pairs            wi

• weights ++:  (NN, VBD)    (VBD, DT)     (VBD→bit)

• weights --:  (NN, NN)     (NN, DT)      (NN→bit)
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Inference: Dynamic Programming
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Perceptron vs. CRFs
• perceptron is online and Viterbi approximation of CRF

• simpler to code; faster to converge; ~same accuracy
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Perceptron Convergence Proof
• binary classification:    converges iff. data is separable

• structured prediction: converges iff. data is separable

• there is an oracle vector that correctly labels all examples

• one vs the rest (correct label better than all incorrect labels)

• theorem: if separable, then # of updates ≤ R2 / δ2     R: diameter
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Geometry of Convergence Proof pt 1
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Geometry of Convergence Proof pt 2
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• Structured Perceptron
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• Latent-Variable Perceptron
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Scalability Challenge 1: Inference

• challenge: search efficiency (exponentially many classes)

• often use dynamic programming (DP)

• but DP is still too slow for repeated use, e.g. parsing O(n3)

• Q: can we sacrifice search exactness for faster learning?
18
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Perceptron w/ Inexact Inference

• routine use of inexact inference in NLP (e.g. beam search)

• how does structured perceptron work with inexact search?

• so far most structured learning theory assume exact search

• would search errors break these learning properties?

• if so how to modify learning to accommodate inexact search?
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Bad News and Good News

• bad news: no more guarantee of convergence

• in practice perceptron degrades a lot due to search errors

• good news: new update methods guarantee convergence

• new perceptron variants that “live with” search errors

• in practice they work really well w/ inexact search
20
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Convergence with Exact Search
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No Convergence w/ Greedy Search
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the proof only uses 3 facts:
1. separation (margin)
2. diameter (always finite)
3. violation (guaranteed by exact search)
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Geometry of Convergence Proof pt 2
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Observation: Violation is all we need!
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y

Violation-Fixing Perceptron
• if we guarantee violation, we don’t care about exactness!

• violation is good b/c we can at least fix a mistake
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What if can’t guarantee violation
• this is why perceptron doesn’t work well w/ inexact search

• because not every update is guaranteed to be a violation

• thus the proof breaks; no convergence guarantee

• example: beam or greedy search

• the model might prefer the correct label (if exact search)

• but the search prunes it away

• such a non-violation update is “bad” 
because it doesn’t fix any mistake

• the new model still misguides the search

• Q: how can we always guarantee violation?
26
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Solution 1: Early update (Collins/Roark 2004)
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Early Update: Guarantees Violation
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Early Update: from Greedy to Beam

• beam search is a generalization of greedy (where b=1)

• at each stage we keep top b hypothesis

• widely used: tagging, parsing, translation...

• early update -- when correct label first falls off the beam

• up to this point the incorrect prefix should score higher

• standard update (full update) -- no guarantee!
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Solution 2: Max-Violation  (Huang et al 2012)
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Max-Violation > Early >> Standard
• exp 1 on part-of-speech tagging w/ beam search (on CTB5)

• early and max-violation >> standard update at smallest beams

• this advantage shrinks as beam size increases

• max-violation converges faster than early (and slightly better)
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Max-Violation > Early >> Standard

33

beam=2

best accuracy  
vs. beam size

 92

 92.5

 93

 93.5

 94

 1  2  3  4  5  6  7be
st

 ta
gg

in
g 

ac
cu

ra
cy

 o
n 

he
ld

-o
ut

beam size

max-violation
early

standard
 92

 92.5

 93

 93.5

 94

 0  0.05  0.1  0.15  0.2  0.25

ta
gg

in
g 

ac
cu

ra
cy

 o
n 

he
ld

-o
ut

training time (hours)

• exp 1 on part-of-speech tagging w/ beam search (on CTB5)

• early and max-violation >> standard update at smallest beams

• this advantage shrinks as beam size increases

• max-violation converges faster than early (and slightly better)



Max-Violation > Early >> Standard
• exp 2 on incremental dependency parser (Huang & Sagae 10)

• standard update is horrible due to search errors

• early update:   38 iterations, 15.4 hours  (92.24)

• max-violation: 10 iterations,   4.6 hours  (92.25)
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Why standard update so bad for parsing

• standard update works horribly with severe search error

• due to large number of invalid updates (non-violation)

35

% of invalid updates 
in standard update

 0

 25

 50

 75

 100

 2  4  6  8  10  12  14  16

%
 o

f i
nv

al
id

 u
pd

at
es

beam size

parsing
tagging

 78

 80

 82

 84

 86

 88

 90

 92

 0  2  4  6  8  10  12  14  16

pa
rs

in
g 

ac
cu

ra
cy

 o
n 

he
ld

-o
ut

training time (hours)

max-violation
early

standardparsing 
b=8

tagging 
b=1

 91

 91.5

 92

 92.5

 93

 93.5

 94

 0  0.05  0.1  0.15  0.2  0.25

ta
gg

in
g 

ac
cu

ra
cy

 o
n 

he
ld

-o
ut

training time (hours)

O(nT3) => O(nb)
O(n11) => O(nb)



Exp 3: Bottom-up Parsing

• CKY parsing with cube pruning for higher-order features

• we extended our framework from graphs to hypergraphs
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Exp 4: Machine Translation
• standard perceptron works poorly for machine translation

• b/c invalid update ratio is very high (search quality is low)

• max-violation converges faster than early update

• first truly successful effort in  
large-scale training for translation
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Comparison of Four Exps
• the harder your search, the more advantageous
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Learning with Latent Variables
• aka “weakly-supervised” or “partially-observed” learning

• learning from “natural annotations”; more scalable

• examples: translation, transliteration, semantic parsing...
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Learning Latent Structures
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Latent Structured Perceptron
• no explicit positive signal

• hallucinate the “correct” derivation by current weights
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Unconstrained Search
• example: beam search phrase-based decoding
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Constrained Search

Bushi yu Shalong juxing le huitan Bush held talks with Sharon

one gold derivation

• forced decoding: must produce the exact reference translation
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Search Errors in Decoding
• no explicit positive signal

• hallucinate the “correct” derivation by current weights
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Search Error: Gold Derivations Pruned
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Fixing Search Error 1: Early Update 

• early update (Collins/Roark’04) when the correct falls off beam

• up to this point the incorrect prefix should score higher

• that’s a “violation” we want to fix;   proof in (Huang et al 2012)

• standard perceptron does not guarantee violation

• the correct sequence (pruned) might score higher at the end!

• “invalid” update b/c it reinforces the model error
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Early Update w/ Latent Variable
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 Fixing Search Error 2: Max-Violation
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• early update works but learns slowly due to partial updates

• max-violation: use the prefix where violation is maximum

• “worst-mistake” in the search space

• now extended to handle latent-variable
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Latent-Variable Perceptron
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Roadmap of Techniques 
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structured 
perceptron
(Collins, 2002)

latent-variable 
perceptron

(Zettlemoyer and Collins, 
2005; Sun et al., 2009)

perceptron w/ 
inexact search

(Collins & Roark, 2004;  
Huang et al 2012)

latent-variable  perceptron 
w/ inexact search

(Yu et al 2013; Zhao et al 2014)

MT syntactic parsing semantic parsing transliteration
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Experiments: Discriminative Training for MT

• standard update (Liang et al’s “bold”) works poorly

• b/c invalid update ratio is very high (search quality is low)

• max-violation converges faster than early update
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Open Problems in Theory
• latent-variable structured perceptron:

• does it converge? under what conditions?

• special case: POS tagging (Sun et al., 2009)

• latent-variable structured perceptron with inexact search

• does it converge? under what conditions?
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Open Problems in Theory
• latent-variable structured perceptron:

• does it converge? under what conditions?

• latent-variable structured perceptron with inexact search

• does it converge? under what conditions?
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Open Problems in Theory
• latent-variable structured perceptron:

• does it converge? under what conditions?

• latent-variable structured perceptron with inexact search

• does it converge? under what conditions?
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Final Conclusions

• online structured learning is simple and powerful

• search efficiency is the key challenge

• search errors do interfere with learning

• but we can use violation-fixing perceptron w/ inexact search

• we can extend perceptron to learn latent structures
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