Textual Entailment w/ Structured Attentions & Composition

Kai Zhao Liang Huang Mingbo Ma Dept. EECS, Oregon State University

Textual Entailment: A Spectrum of Approaches

As of 2016.11 cf. McCarteney & Manning 2007

Textual Entailment as Structured Prediction w/ Latent Var.

- For each sentence pair (P,Q) and reference relation y
 - online-fashion: minimize the (stepwise) negative log probability

$$\ell = -\log \Pr(y|P,Q)$$

= $-\log \sum_{\mathbf{A}} \Pr(y, \mathbf{A}|P,Q)$
= $-\log \sum_{\mathbf{A}} [\Pr(\mathbf{A}|P,Q) \cdot \Pr(y|\mathbf{A}, P,Q)]$

○ two sub-problems:

- given an alignment $\mathbf{A} \in \{0,1\}^{|P| \times |Q|}$, calculate entailment bottom-up
- how to search through all possible latent alignments (exp. many)

$$\mathbf{A} \in \left\{ \begin{array}{cccc} \bullet \bullet \bullet \bullet \\ \bullet \bullet \bullet \bullet \end{array} \right\}$$

Entailment Calculation

$$\ell = -\log \sum_{\mathbf{A}} [\Pr(\mathbf{A}|P,Q) \cdot \Pr(y|\mathbf{A},P,Q)]$$

- Given an alignment, calculate the entailment bottom-up
 - \circ the entailment relation at hypothesis node *i*: a continuous vector \mathbf{e}_i
 - the meaning representation of the subtree rooted at *i* is \mathbf{h}_{i}^{Q}
 - \circ node *i* is aligned to premise node *j*, which has meaning repr. \mathbf{h}_{j}^{P}
 - \circ entailment relations from two children nodes of *i*: $\mathbf{e}_{i,1}, \mathbf{e}_{i,2}$

$$\mathbf{e}_i = f_{\mathrm{rel}}(\mathbf{h}_i^P, \mathbf{h}_j^Q; \mathbf{e}_{i,1}, \mathbf{e}_{i,2})$$

- Options for $f_{\rm rel}$
 - Recursive NN (Socher et al., 2013)
 - Convolution NN
 - Tree LSTM (Tai et al., 2015)

Approximated Search in the Latent Space

• Stepwise objective

$$\ell = -\log \Pr(y|P,Q)$$

= $-\log \sum_{\mathbf{A}} \Pr(y, \mathbf{A}|P,Q)$
= $-\log \sum_{\mathbf{A}} [\Pr(\mathbf{A}|P,Q) \cdot \Pr(y|\mathbf{A}, P,Q)]$

• The structured latent variable $\mathbf{A} \in \{0,1\}^{|P| \times |Q|}$ takes value from an exponentially large space

 \circ calculating $\sum_{\mathbf{A}} [\Pr(\mathbf{A}|P,Q) \cdot (\cdot)]$ exactly is intractable

- Approximately search through the space
 - \circ sampling
 - expected alignment

 $\Pr(\mathbf{A}|P,Q) = \Pr(y|\mathbf{A},P,Q)$

Two women are hugging one another The women are sleeping

sample an alignment

 $\Pr(\mathbf{A}|P,Q) \quad \Pr(y|\mathbf{A},P,Q)$

Two women are hugging one another The women are sleeping

sampled alignment

Improving Alignments (Optional)

- Improve alignment calculation with some heuristics
 - alignment and relation calculations are separated
- Heuristic: symmetric property
 - if a hypothesis node i is most relevant to a premise node j
 - premise node *j* should be most relevant to hypo. node *i*
 - widely used in statistical MT to reduce noice
 - intersection of two directional alignments
 - · for alignment probability we use element-wise product

Empirical Evaluation

- Dataset: Stanford Natural Language Inference
 - $\circ\,$ annotated by mechanical turk
 - o 570k sentence pairs in training
 - 10k sentence pairs in development/testing each
 - 3 relations: entailment, neutral, contradiction
- Example sentence pairs
 - o entailment
 - Premise: An old man with a package poses in front of an advertisement.
 - Hypothesis: A man poses in front of an ad.
 - \circ contradiction
 - Premise: A statue at a museum that none seems to be looking at.
 - Hypothesis: Tons of people are gathering around the statue.

Approximate Search with Expected Alignment

• Review the stepwise objective: negative log of expected probability of the relation $\ell = -\log \Pr(y|P,Q)$ $= -\log \sum \Pr(y, \mathbf{A}|P,Q)$

$$= -\log \sum_{\mathbf{A}}^{\mathbf{A}} [\Pr(\mathbf{A}|P,Q) \cdot \Pr(y|\mathbf{A},P,Q)]$$
$$= -\log \mathbb{E}_{\Pr(\mathbf{A}|P,Q)} [\Pr(y|\mathbf{A},P,Q)]$$

 can be approximated by negative log probability of the relation under expected alignment (Xu et al., 2015)

 $\ell \approx -\log \Pr(y|\mathbb{E}_{\Pr(\mathbf{A}|P,Q)}[\mathbf{A}], P, Q)$

 $= -\log \Pr(y|\tilde{\mathbf{A}}, P, Q)$

Accuracy on testing set

- Example 1 lacksquare
 - P: Several younger people sitting in front of a statue.
 - H: Several young people are sitting in an auditorium.
- Alignment Distribution

- Example 1 lacksquare
 - P: Several younger people sitting in front of a statue.
 - H: Several young people are sitting in an auditorium.
- **Dual-Alignment**

- Example 1
 - P: Several younger people sitting in front of a statue.
 - H: Several young people are sitting in an auditorium.
- Dual-Alignment
 - \circ tree-level

• Example 1

- P: Several younger people sitting in front of a statue.
- H: Several young people are sitting in an auditorium.
- Entailment Composition

The final contradiction dominates the overall relation.

- Example
 - P: A person taking pictures of a young brunette girl.
 - H: A young model has her first photoshoot.
- Alignment Distribution

- Example
 - P: A person taking pictures of a young brunette girl.
 - H: A young model has her first photoshoot.
- Dual-Alignment

- Example
 - P: A person taking pictures of a young brunette girl.
 - H: A young model has her first photoshoot.
- Entailment composition

Neutral

Discussion

- Some difficult examples: we need to modify our framework to handle these
 - More variations in syntax
 - The boy loves the girl.
 - The girl loves the boy.
 - The boy loved the girl.
 - Some are more subtle
 - A stuffed animal on the couch.
 - An animal on the couch.
 - A stuffed toy on the couch.
- Traditional Datasets: Pascal RTE, FraCas

Conclusion

- A soft version of natural logic
- Textual entailment problem as a latent variable structured prediction problem
- Approximate the exponentially large latent space with
 - \circ sampling
 - expected alignment
- Align from two directions to improve alignment
- Learn an RNN for entailment relation composition
- Easy to interpret:
 - what is the entailment relation at each hypothesis tree node
 - how these entailment relations are composed

However

- Textual entailment is still a difficult problem
- For example, our approach does not handle following cases:

FIN

Thank you!

Any questions?