Textual Entailment w/ Structured Attentions \& Composition

Kai Zhao Liang Huang Mingbo Ma
Dept. EECS, Oregon State University

Textual Entailment: A Spectrum of Approaches

As of 2016.11
cf. McCarteney \& Manning 2007

MacCartney \& Manning, 2007
Wang \& Manning, 2007
Watanabe et al., 2012
Tian et al., 2014
Filice et al., 2015
Rocktäschel et al., 2015
al., 2015
Our Work Wang \& Jiang., 2015 Bowman et al., 2015

discrete repr. easy to understand brittle
continuous repr.
robust
difficult to interpret

Textual Entailment: An Example

Textual Entailment as Structured Prediction w/ Latent Var.

- For each sentence pair (P, Q) and reference relation y
- online-fashion: minimize the (stepwise) negative log probability

$$
\begin{aligned}
\ell & =-\log \operatorname{Pr}(y \mid P, Q) \\
& =-\log \sum_{\mathbf{A}} \operatorname{Pr}(y, \mathbf{A} \mid P, Q) \\
& =-\log \sum_{\mathbf{A}}[\operatorname{Pr}(\mathbf{A} \mid P, Q) \cdot \operatorname{Pr}(y \mid \mathbf{A}, P, Q)]
\end{aligned}
$$

- two sub-problems:
- given an alignment $\mathbf{A} \in\{0,1\}^{|P| \times|Q|}$, calculate entailment bottom-up
- how to search through all possible latent alignments (exp. many)

Entailment Calculation

$$
\ell=-\log \sum_{\mathbf{A}}[\operatorname{Pr}(\mathbf{A} \mid P, Q) \cdot \operatorname{Pr}(y \mid \mathbf{A}, P, Q)]
$$

- Given an alignment, calculate the entailment bottom-up
- the entailment relation at hypothesis node i : a continuous vector \mathbf{e}_{i}
- the meaning representation of the subtree rooted at i is \mathbf{h}_{i}^{Q}
- node i is aligned to premise node j, which has meaning repr. \mathbf{h}_{j}^{P}
- entailment relations from two children nodes of i : $\mathbf{e}_{i, 1}, \mathbf{e}_{i, 2}$

$$
\mathbf{e}_{i}=f_{\mathrm{rel}}\left(\mathbf{h}_{i}^{P}, \mathbf{h}_{j}^{Q} ; \mathbf{e}_{i, 1}, \mathbf{e}_{i, 2}\right)
$$

- Options for $f_{\text {rel }}$
- Recursive NN (Socher et al., 2013)
- Convolution NN
- Tree LSTM (Tai et al., 2015)

Approximated Search in the Latent Space

- Stepwise objective

$$
\begin{aligned}
\ell & =-\log \operatorname{Pr}(y \mid P, Q) \\
& =-\log \sum_{\mathbf{A}} \operatorname{Pr}(y, \mathbf{A} \mid P, Q) \\
& =-\log \sum_{\mathbf{A}}[\operatorname{Pr}(\mathbf{A} \mid P, Q) \cdot \operatorname{Pr}(y \mid \mathbf{A}, P, Q)]
\end{aligned}
$$

- The structured latent variable $\mathbf{A} \in\{0,1\}^{|P| \times|Q|}$ takes value from an exponentially large space
- calculating $\sum_{\mathbf{A}}[\operatorname{Pr}(\mathbf{A} \mid P, Q) \cdot(\cdot)]$ exactly is intractable
- Approximately search through the space
- sampling
- expected alignment

Approximate Search with Sampling

Improving Alignments (Optional)

- Improve alignment calculation with some heuristics
- alignment and relation calculations are separated
- Heuristic: symmetric property
- if a hypothesis node i is most relevant to a premise node j
- premise node j should be most relevant to hypo. node i
- widely used in statistical MT to reduce noice
- intersection of two directional alignments
- for alignment probability we use element-wise product

Empirical Evaluation

- Dataset: Stanford Natural Language Inference
- annotated by mechanical turk
- 570k sentence pairs in training
- 10k sentence pairs in development/testing each
- 3 relations: entailment, neutral, contradiction
- Example sentence pairs
- entailment
- Premise: An old man with a package poses in front of an advertisement.
- Hypothesis: A man poses in front of an ad.
- contradiction
- Premise: A statue at a museum that none seems to be looking at.
- Hypothesis: Tons of people are gathering around the statue.

Empirical Evaluation: Quantitative

Accuracy on testing set
88

Approximate Search with Expected Alignment

- Review the stepwise objective: negative log of expected probability of the relation

$$
\begin{aligned}
\ell & =-\log \operatorname{Pr}(y \mid P, Q) \\
& =-\log \sum_{\mathbf{A}} \operatorname{Pr}(y, \mathbf{A} \mid P, Q) \\
& =-\log \sum_{\mathbf{A}}[\operatorname{Pr}(\mathbf{A} \mid P, Q) \cdot \operatorname{Pr}(y \mid \mathbf{A}, P, Q)] \\
& =-\log \mathbb{E}_{\operatorname{Pr}(\mathbf{A} \mid P, Q)}[\operatorname{Pr}(y \mid \mathbf{A}, P, Q)]
\end{aligned}
$$

- can be approximated by negative log probability of the relation under expected alignment (Xu et al., 2015)

- use one (soft) alignment to approximately represent all alignments

$$
\begin{aligned}
\ell & \approx-\log \operatorname{Pr}\left(y \mid \mathbb{E}_{\operatorname{Pr}(\mathbf{A} \mid P, Q)}[\mathbf{A}], P, Q\right) \\
& =-\log \operatorname{Pr}(y \mid \widetilde{\mathbf{A}}, P, Q)
\end{aligned}
$$

Empirical Evaluation: Quantitative

Accuracy on testing set

Empirical Evaluation: Qualitative

- Example 1
- $P:$ Several younger people sitting in front of a statue.
- H: Several young people are sitting in an auditorium.
- Alignment Distribution

Empirical Evaluation: Qualitative

- Example 1
- P: Several younger people sitting in front of a statue.
- H: Several young people are sitting in an auditorium.
- Dual-Alignment

Empirical Evaluation: Qualitative

- Example 1
- P: Several younger people sitting in front of a statue.
- H: Several young people are sitting in an auditorium.
- Dual-Alignment
- tree-level

Empirical Evaluation: Qualitative

- Example 1
- P : Several younger people sitting in front of a statue.
- H: Several young people are sitting in an auditorium.
- Entailment Composition

Empirical Evaluation: Qualitative

- Example
- P: A person taking pictures of a young brunette girl.
- H : A young model has her first photoshoot.
- Alignment Distribution

Empirical Evaluation: Qualitative

- Example
- P: A person taking pictures of a young brunette girl.
- H : A young model has her first photoshoot.
- Dual-Alignment

Empirical Evaluation: Qualitative

- Example
- P: A person taking pictures of a young brunette girl.
- H: A young model has her first photoshoot.
- Entailment composition

Discussion

- Some difficult examples: we need to modify our framework to handle these
- More variations in syntax
- The boy loves the girl.
- The girl loves the boy.
- The boy loved the girl.
- Some are more subtle
- A stuffed animal on the couch.
- An animal on the couch.
- A stuffed toy on the couch.
- Traditional Datasets: Pascal RTE, FraCas

Conclusion

- A soft version of natural logic
- Textual entailment problem as a latent variable structured prediction problem
- Approximate the exponentially large latent space with
- sampling
- expected alignment
- Align from two directions to improve alignment
- Learn an RNN for entailment relation composition
- Easy to interpret:
- what is the entailment relation at each hypothesis tree node
- how these entailment relations are composed

However

- Textual entailment is still a difficult problem
- For example, our approach does not handle following cases:

Entailment

Premise: A man is waiting in front of a red light. Hypothesis: A man is waiting for green light.

Premise: A boy is splashing through the ocean. Hypothesis: A boy is in Kansas.

FIN

Thank you!
Any questions?

